INVESTIGATIONS IN THE BENZAZOLE AND NAPHTHAZOLE SERIES

XXX.* STRUCTURE AND COLOR OF 1-BENZAZOLYL-3-PHENYL(METHYL)-5-(p-NITRO)[DIMETHYLAMINO]-PHENYLFORMAZANS

N. V. Serebryakova, G. N. Lipunova,

N. P. Bednyagina, and L. F. Lipatova

UDC 547.785.5'789.6'796.883: 541.651:543.422.4

The introduction of electron-accepting or electron-donating groups in the phenyl ring of unsymmetrical benzazolylformazans causes deepening of the color of the formazans and their complexes with metals. Nitro- and dimethylamino-substituted formazans have a nonchelate structure with predominance of imino tautomeric forms for the benzimidazolyl and amino forms for the benzothiazolyl or benzoxazolylformazans.

The effect of electron-accepting (nitro) or electron-donating (dimethylamino) groups on the structure and color of benzazolylformazans and their salts and metal complexes was investigated by us for formazans I-XII (Table 1).

It has been previously established [2-4] that, depending on the nature of the heterocycle and the substituent in the 3 position (methyl, phenyl), unsymmetrical benzazolylformazans have an open or chelate structure. It was established that $\nu_{\rm NH}$ in the 3450 cm⁻¹ region for open formazans is due to the imino tautomeric form with the hydrogen on the nitrogen of the benzazole ring, while $\nu_{\rm NH}$ in the 3350 cm⁻¹ region is due to the amino tautomeric form with the hydrogen on N₁ of the formazan group.

As seen from the IR spectral data (Table 1), the introduction of both nitro and dimethylamino groups, regardless of the nature of the heterocycle and the substituent in the 3 position, leads to opening of the chelate ring. Moreover, judging from the position of the $\nu_{\rm NH}$ frequencies for I-IV, the imino form prevails, while the amino tautomeric form dominates for V-VIII and IX-XII.

Both the nitro and dimethylamino groups introduce considerable perturbations in the π -electron system of formazans. Compounds I-XII are much more deeply colored in solution than the corresponding unsubstituted formazans. The greatest deepening of color is observed for benzothiazolyl- and benzoxazolyl-formazans with a nitro group (V, VII, IX, and XI, $\Delta\lambda_{max} = 100$ -160 nm). For XI there are two absorption maxima (456, 566) in the visible region of the spectrum, while the IR spectrum has two ν_{NH} frequencies; this is evidence for the presence of a mixture of amino and imino forms in CHCl₃ solutions.

In contrast to unsubstituted formazans, formazans with a nitro group have different bathochromic effects during the formation of sodium salts, depending on the heterocycle. The effect is rather large for benzimidazolylformazans (75-105 nm), while for benzothiazolyl- and benzoxazolylformazans it is very small or completely absent.

It may be assumed that the structure of the dipolar ion (A) makes an appreciable contribution to the imino tautomeric form for benzimidazolylformazans, as evidenced by the large dipole moment of these

^{*}For Communication XXIX, see [1].

S. M. Kirov Ural Polytechnic Institute, Sverdlovsk. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1403-1405, October, 1970. Original article submitted August 7, 1968.

^{© 1973} Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

Comp.	x	R	Rı	ν _{NH} , cm ⁻¹ (CHCl ₂)	λ _{max} , nm		λ _{max} (nm) of metal complexes			
					A Icohol	Δλ*max	Alcoholic NaOH	Ni ²⁺	Zn²+	Co²+
I	NCH₂C6H5 NCH2C6H5	C ₆ H ₅ C ₆ H ₅	NO ₂ N (CH ₃) ₂	3464 3450	554 508	80 34	628	678 660	666 466; 656	680—710 586; 750 —800
Ш	NCH₂C6H5	CH ₃	NO ₂	3440; 3340	522	58	628	674	568	422; 700
IV	NCH ₂ C ₆ H ₅	CH ₃	$N(CH_3)_2$	3450	510	46	548	652	520	-750 584; 750
V VI	S S	C_6H_5 C_6H_5	NO ₂ N (CH ₃) ₂	3308 3328	586 532	116 62		676 482; 672	668 482; 662	-800 670-690 464; 750 -800
VII VIII	S S	CH₃ CH₃	NO2 N (CH3) 2	3230; 3185 3340	510 500	100 90	510 554	546 670	486 528	550; 670 610; 750 —800
IX X	0	${{ m C_6H_5}\atop { m C_6H_5}}$	NO ₂ N (CH ₃) ₂	3315 3340	572 500	142 70	574 522	660 480;	640 480; 630	560; 670 610; 750 —800
ΧI	0	CH ₃	NO ₂	3440; 3360	456;	46	566	648 640	516	540; 656
XII	0	СН₃	N(CH ₃) ₂	3350	566 476	160 66	526	640	514	596; 750 —800

^{*}Bathochromic shift in λ_{max} as compared with unsubstituted formazans (R₁ = H).

TABLE 2. Characteristics of the Formazans Obtained

	mp (crystallization		F	ound,	%	Calc., %		
Comp.		Empirical formula	С	н	N	С	н	N
I	112—14 (alcoho1)	C ₂₇ H ₂₁ N ₇ O ₂ · C ₂ H ₅ OH	66,74	5,33	19,22	66,76	4,99	18,80
II.		$C_{29}H_{27}N_7$	73,22	5,65	20,77	73,57	5,70	20,71
ΙV	114—115 (isoamyl alcohol)	C ₂₄ H ₂₅ N ₇ · C ₅ H ₁₁ OH	69,71	7,57	19,59	69,73	7,41	19,63
V <u>I</u>	114—16 (alcohol)	C ₂₂ H ₂₀ N ₆ S · C ₂ H ₅ OH	64,75	5,20	18,91	64,57	5,52	18,83
VIII	212—13 (alcohol)	$C_{17}H_{18}N_6S\cdot H_2O$	60,33	5,62	25 ,2 2	60,35	5,32	24,85
X	188—90 (alcohol)	$C_{22}H_{20}N_6O\cdot 0{,}5H_2O$	67,27	5,43	20,79	67,17	5,34	21,37
XII	178—80 (aqueous acetone)	$C_{17}H_{18}N_6O$	63,33	5,62	26,14	63,35	5,59	26,08

formazans [5]. A structure with the nitro group in the aci form with intermolecular hydrogen bonds (B) is most likely for benzothiazolyl- and benzoxazolylformazans V, VII, IX, and XI:

$$\begin{array}{c|c}
 & H \oplus \\
 & N \oplus \\
 &$$

The formation of a sodium salt in this case does not introduce changes in the electronic state of the molecule and therefore does not cause a bathochromic effect. Also confirming this is the weak resolution of the IR spectra (LiF prism) and the high lability of the proton which is bonded here with oxygen rather than nitrogen (the pK_a for VII is 8.1, that for XI is 7.7, while for the remaining formazans with a methyl group in the 3 position it is 12-13).

The introduction of a nitro or dimethylamino group induces a deepening in the color not only of formazans themselves but also of their metal complexes. The nickel complexes are more deeply colored by 30-40 nm, but the bathochromic effect is particularly large for cobalt complexes of formazans containing a dimethylamino group since λ_{max} for them lies in the 750-800 nm region.

The formazans were obtained by coupling of benzazolylhydrazones with diazonium salts (Table 2). The synthesis of V, VII, IX, III, and XI was previously described in [6, 7].

LITERATURE CITED

- 1. G. A. Mokryshina and N. P. Bednyagina, Khim. Geterotsikl. Soed., 1401 (1970).
- 2. N. P. Bednyagina, G. N. Lipunova, A. P. Novikova, A. P. Zeif, and L. N. Shchegoleva, Zh. Organ. Khim., 4, 619 (1970).
- 3. A. P. Zeif, L. N. Shchegoleva, N. P. Bednyagina, A. P. Novikova, and G. N. Lipunova, Zh. Organ. Khim. (in press).
- 4. N. P. Bednyagina and G. N. Lipunova, Khim. Geterotsikl. Soed., 877 (1969).
- 5. A. D. Garnovskii, O. A. Osipov, V. T. Panyushkin, N. P. Bednyagina, and A. I. Kuznetsova, Summary of Papers Presented at the All-Union Conference on Dipole Moments and Structure of Molecules [in Russian], Rostov-on-Don (1967).
- 6. N. P. Bednyagina, N. V. Serebryakova, and G. N. Lipunova, Khim. Geterotsikl. Soed., 342 (1967).
- 7. Yu. A. Rybakova and N. P. Bednyagina, Khim. Geterotsikl. Soed., 421 (1965).